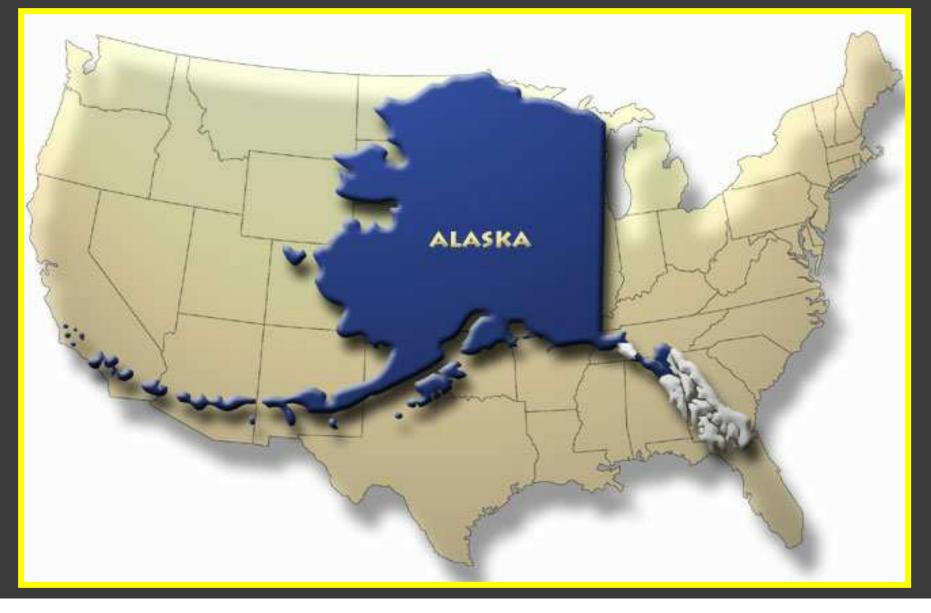
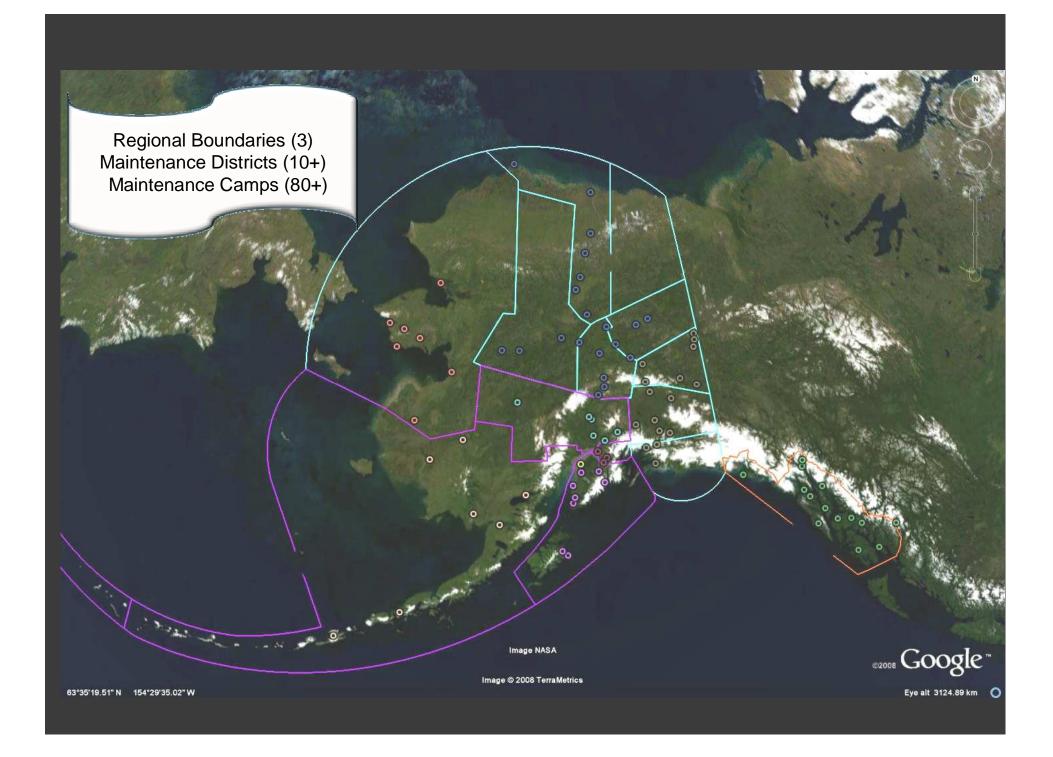
Alaska Department of Transportation & Public Facilities

PAVEMENT PRESERVATION ACTIVITIES OVERVIEW

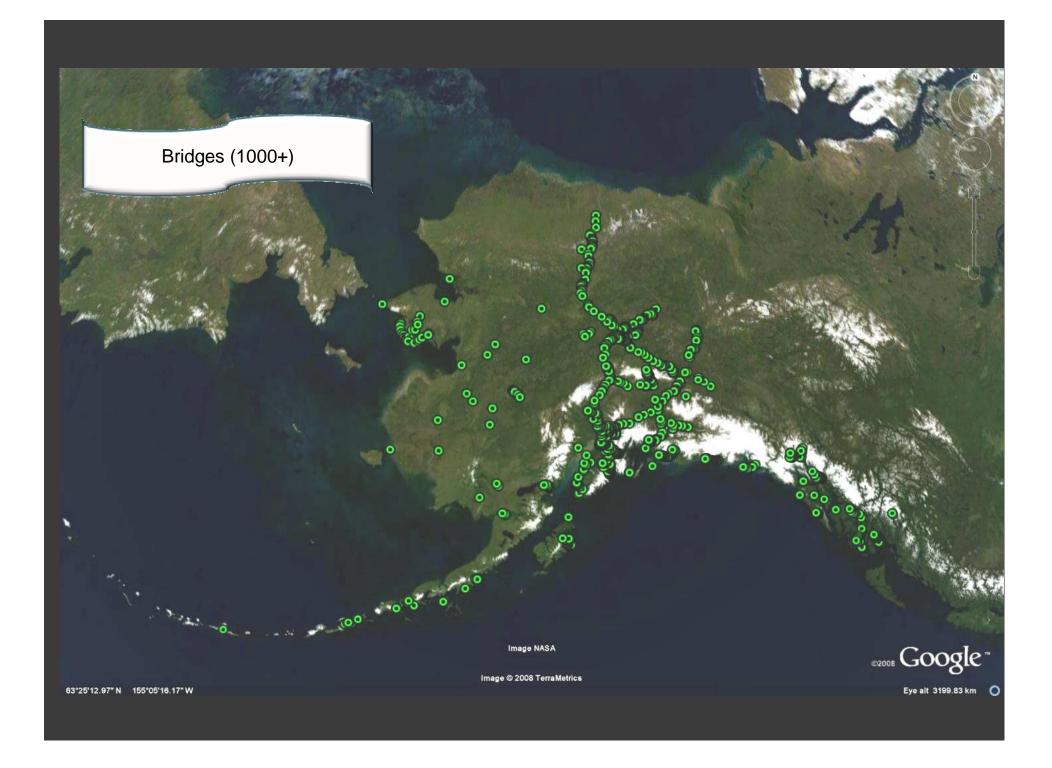

Angela Parsons, P.E. State Pavement Management and Preservation Engineer

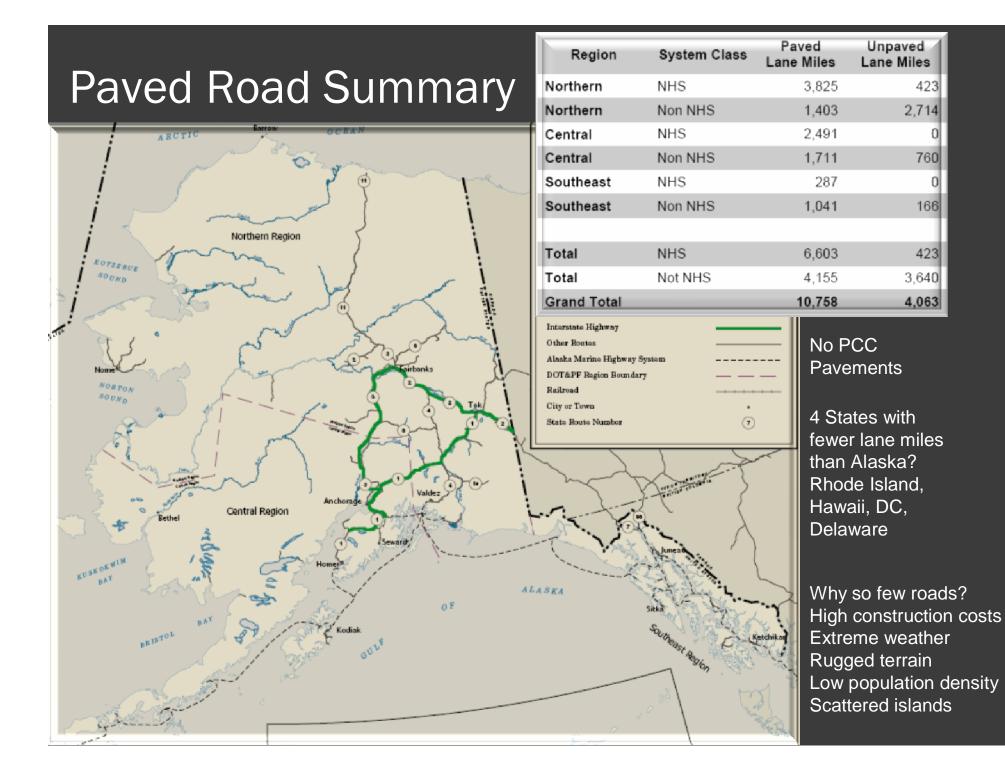
> RMPPP Annual Meeting Albuquerque, NM Oct 28-30th 2008

How the Nation Sees Alaska...


How Alaska Sees Alaska...

At 591,000 square miles, Alaska is as wide as the lower 48 states and larger than Texas, California, and Montana combined.


Official language(s) Spoken language(s)	English English 89.7%,
Domonum	Native North American 5.2%, Spanish 2.9% Alaskan
Demonym	Alaskan
Capital	Juneau
Largest city	Anchorage
Area - Total	Ranked 1 st in the US 663,267 sq mi (1,717,854 km²)
- Width	808 miles (1,300 km)
- Length	1,479 miles (2,380 km)
- % water	13.77
- Latitude	51°20'N to 71°50'N
- Longitude	130°W to 172°E
Population	Ranked 47 th in the US
- Total	683.478 (2007 est.) ^[1]
- Density	1.2/sq mi (0.46/km²)
	Ranked 50 th in the US
- Median income	US\$54,627 (6 th)
Elevation	
- Highest point	Mount McKinley ^[2] 20,320 ft (6,193.7 m)
Haan	
- Mean - Lowest point	1900 ft (580 m)
- Lowest point	Pacific Ocean ^[2] 0 ft (0 m)
Admission to Union	January 3, 1959 (49 th)
Governor	Sarah Palin (R)
Lieutenant Governor	Sean Parnell (R)
U.S. Senators	Ted Stevens (R)
	Lisa Murkowski (R)
Congressional Delegation	Don Young (R) (list)
Time zones	
- east of 169° 30'	Alaska: UTC-9/DST-8
- west of 169° 30'	Aleutian: UTC-10/DST-9
Abbreviations	AK US-AK
Website	www.alaska.gov 🚱



Budget for Pavement Preservation Activities

- Statewide M&O Engineer (manages a capital program of \$50 million/year allocated to Regions for pavement preservation and other preventative maintenance.
- Regional Allocation:
 - \$24M Northern:
 - \$10M crack sealing, chip seals, high floats
 - \$13M mill/overlay
 - \$24M Central:
 - \$17M repairs: mill/overlay, pre-level/overlay, patching
 - \$3M preventative but only about \$1M crack sealing.
 - No chip seals
 - \$2M Southeast:
 - \$1M chip seals (no crack sealing)

			Crack Sealing	Patching	Chip Seal	Patching	Overlay	Crack Sealing	Patching	Chip Seal	Patching	Rehab
Northern	Timing (Years)	NHS	5	7			10	15	17			20
		Non- NHS	5	7			10	15	17			20
	Cost		\$4,752	\$750	\$53,856	\$750	\$150,000	\$4,752	\$750	\$53,856	\$750	\$500,000
	(\$/Ln-mi)											
Central	Timing (Years)	NHS	3	4			7	10	11			14
		Non- NHS	3	5		8	10	13	15		18	20
	Cost (\$/Ln-mi)		\$2,600	\$800		\$2,600	\$250,000	\$2,600	\$800		\$2,600	\$500,000
Southeast	Timing (Years)	NHS	3	5	7	10	15	18	20	22	25	30
		Non- NHS	3	5	5	10	15	18	20	20	25	30
	Cost \$/Ln-mi)		\$900	\$750	\$65,000	\$750	\$225,000	\$900	\$750	\$65,000	\$750	\$500,000

Exhibit 17: Life Cycle Management Treatment Cycles

Challenges for Preservation Program

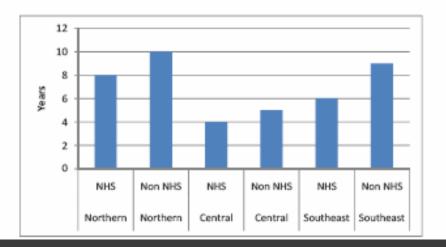

- Oue to reliance on Federal funding, are we generally past the point of preservation?
 - Poor conditions with backlog of reconstruction needed
 - cost escalations
 - lack of flexibility
 - needs outpace funding

Exhibit 11. Road condition and Kemanning Service Life (RSE)							
Region	System Class	Lane Width <12	Lane Width >12	High IRI %	High Rutting %	IRI and Rutting %	Avg. RSL
Northern	NHS	45	1820	20%	1%	0%	8
Northern	Non NHS	158	1472	8%	1%	1%	10
Central	NHS	19	750	4%	23%	1%	4
Central	Non NHS	91	845	4%	26%	3%	5
Southeast	NHS	3	134	13%	8%	6%	6
Southeast	Non NHS	31	292	13%	5%	1%	9
Total	NHS	67	2703	13%	10%	1%	6
Total	Not NHS	280	2608	8%	12%	2%	8
Grand Total		347	5312	11%	11%	1%	7

Exhibit 11: Road Condition and Remaining Service Life (RSL)

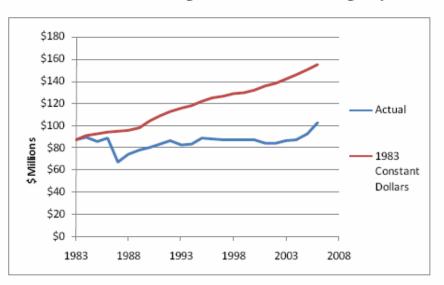
Exhibit 12 below shows the average RSL by region and system type. It indicates that Central region NHS roads have the least average RSL, while Northern region non-NHS roads have the highest average RSL.

Exhibit 19: Summary of Life Cycle Needs (\$Millions)

		Backlog (\$ Millions)	Life Cycle Needs 2008 – 2030 (\$ Millions)	Total (\$ Millions)
Northern	NHS	\$219	\$2,564	\$2,783
	Non-NHS	\$51	\$1,061	\$1,112
Central	NHS	\$230	\$1,691	\$1,921
	Non-NHS	\$209	\$1,277	\$1,486
Southeast	NHS	\$11	\$187	\$198
	Non-NHS	\$30	\$648	\$678
Total	NHS	\$460	\$4,442	\$4,902
	Non-NHS	\$290	\$2,986	\$3,275
	Total	\$750	\$7,428	\$8,178

not necessarily be treated first.⁸ Implementation will be constrained by the size of the current backlog. However, if roads are impassible or close to failure, "worst first" is unavoidable.

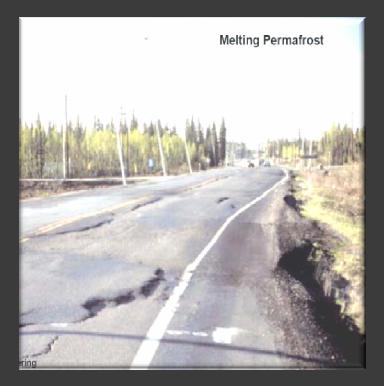
Highways and Bridges: Routine Maintenance


Routine maintenance is an important part of life cycle management and ensuring the serviceability of existing infrastructure. For example: Painting steel bridges, especially in a maritime environment; keeping culverts and ditches clear so that water does not infiltrate to the base of the road; and other maintenance activities are important elements of life cycle management.

Needs

Maintenance needs are most effectively measured in terms of what it costs to provide a particular maintenance level of service. ADOT&PF does not currently have the data to compute this.

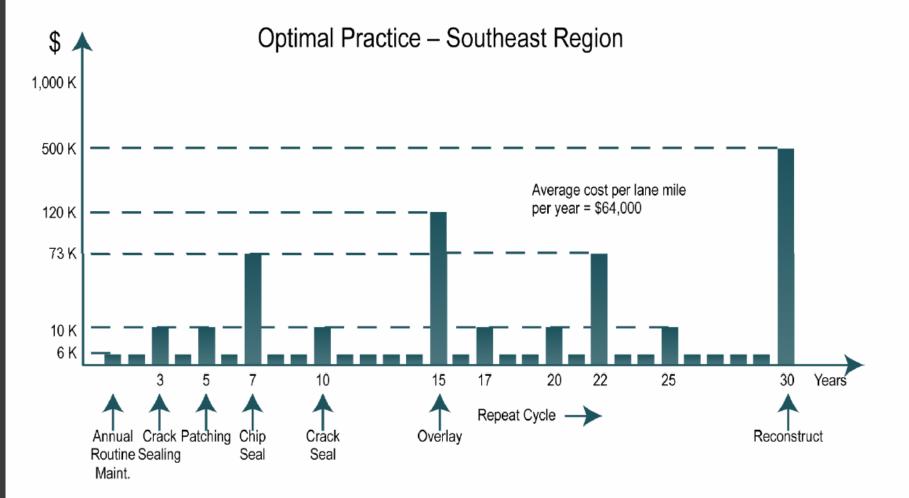
Let's Get Moving 2030 uses ADOT&PF expert opinion to make the conservative assumption that in 1983 maintenance was funded at a level that results in an acceptable level of service. Annual maintenance needs are then defined as the 1983 funding level held constant (adjusted for inflation). The gap between funds allocated to maintenance and funds required to pursue desirable life cycle management is shown in Exhibit 20. The gap is a conservative estimate because the number of lane miles to maintain, material costs, and environmental compliance costs, among other factors, has increased over the years.


Exhibit 20: Growing Maintenance Funding Gap

⁸ Any policy choice to not treat the worst roads first, must also consider public safety, and which option would achieve the highest overall safety profile. The plan is not recommending that by not treating the worst roads first, public safety would be disregarded.

Challenges:

Our Unstable embankment – permafrost


Central Region – Surface Wear Rutting

Preservation treatment with greatest success

- Southeast Region Chip Seals?
 - Less extreme temperatures and weather conditions
 - Stable embankments
 - Less studded tire wear and traffic congestion
 - Longer construction window
 - May be best candidate area for fog seals

Exhibit 5: Life Cycle Management Optimal Practice Expenditures (Southeast region)

Particularly Interested in:

- Developing a system for identifying/prioritizing good candidates, documenting and monitoring pavement preservation activities and results – map and web based?
- Supporting in-house communication and collaboration
- PR for pavement preservation moving away from "worst-first"
- Collaborating with University of Alaska for pavement preservation research – tips for successful partnership?
- Warranties?

Thank You!

- Angela Parsons
 State Pavement Management/Preservation Engineer
 - angela.parsons@alaska.gov
 - (907) 269-6208

